

7.3 Similar Right Triangles

MATERIALS • rectangular piece of paper •ruler •scissors • colored pencils
QUESTION How are geometric means related to the altitude of a right triangle?

EXPLORE Compare right triangles

STEP 1

Draw a diagonal Draw a diagonal on your rectangular piece of paper to form two congruent right triangles.

STEP 3

Cut and label triangles Cut the rectangle into the three right triangles that you drew. Label the angles and color the triangles as shown.

STEP 2

Draw an altitude Fold the paper to make an altitude to the hypotenuse of one of the triangles.

STEP 4

Arrange the triangles Arrange the triangles so $\angle 1, \angle 4$, and $\angle 7$ are on top of each other as shown.

DRAW CONCLUSIONS

1. How are the two smaller right triangles related to the large triangle?
2. Explain how you would show that the green triangle is similar to the red triangle.
3. Explain how you would show that the red triangle is similar to the blue triangle.
4. The geometric mean of a and b is x if $\frac{a}{x}=\frac{x}{b}$. Write a proportion involving the side lengths of two of your triangles so that one side length is the geometric mean of the other two lengths in the proportion.

73 Use Similar Right Triangles

Before
Now
Why?

You identified the altitudes of a triangle.
You will use properties of the altitude of a right triangle.
So you can determine the height of a wall, as in Example 4.

Key Vocabulary

- altitude of a triangle, p. 320
- geometric mean, p. 359
- similar polygons, p. 372

When the altitude is drawn to the hypotenuse of a right triangle, the two smaller triangles are similar to the original triangle and to each other.

THEOREM

For Your Notebook

THEOREM 7.5

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

$\triangle C B D \sim \triangle A B C, \triangle A C D \sim \triangle A B C$, and $\triangle C B D \sim \triangle A C D$.

Proof: below; Ex. 35, p. 456

Plan for Proof of Theorem 7.5 First prove that $\triangle C B D \sim \triangle A B C$. Each triangle has a right angle and each triangle includes $\angle B$. The triangles are similar by the AA Similarity Postulate. Use similar reasoning to show that $\triangle A C D \sim \triangle A B C$.

To show $\angle C B D \sim \triangle A C D$, begin by showing $\angle A C D \cong \angle B$ because they are both complementary to $\angle D C B$. Each triangle also has a right angle, so you can use the AA Similarity Postulate.

EXAMPLE 1 Identify similar triangles

Identify the similar triangles in the diagram.

Solution

Sketch the three similar right triangles so that the corresponding angles and sides have the same orientation.

- $\triangle T S U \sim \triangle R T U \sim \triangle R S T$

EXAMPLE 2 Find the length of the altitude to the hypotenuse

SWIMMING POOL The diagram below shows a cross-section of a swimming pool. What is the maximum depth of the pool?

Solution

STEP 1 Identify the similar triangles and sketch them.

$\triangle R S T \sim \triangle R T M \sim \triangle T S M$
STEP 2 Find the value of h. Use the fact that $\triangle R S T \sim \triangle R T M$ to write a proportion.

$$
\begin{aligned}
\frac{T M}{S T} & =\frac{T R}{S R} & & \begin{array}{l}
\text { Corresponding side lengths of } \\
\text { similar triangles are in proport }
\end{array} \\
\frac{h}{64} & =\frac{152}{165} & & \text { Substitute. } \\
165 h & =64(152) & & \text { Cross Products Property } \\
h & \approx 59 & & \text { Solve for } h .
\end{aligned}
$$

STEP 3 Read the diagram above. You can see that the maximum depth of the pool is $h+48$, which is about $59+48=107$ inches.

- The maximum depth of the pool is about 107 inches.

AnimatedGeometry at classzone.com

Guided Practice for Examples 1 and 2

Identify the similar triangles. Then find the value of x.

2.

READ SYMBOLS Remember that an altitude is defined as a segment. So, $\overline{C D}$ refers to an altitude in $\triangle A B C$ and $C D$ refers to its length.

GEOMETRIC MEANS In Lesson 6.1, you learned that the geometric mean of two numbers a and b is the positive number x such that $\frac{a}{x}=\frac{x}{b}$. Consider right $\triangle A B C$. From Theorem 7.5, you know that altitude $\overline{C D}$ forms two
 smaller triangles so that $\triangle C B D \sim \triangle A C D \sim \triangle A B C$.

Notice that $\overline{C D}$ is the longer leg of $\triangle C B D$ and the shorter leg of $\triangle A C D$. When you write a proportion comparing the leg lengths of $\triangle C B D$ and $\triangle A C D$, you can see that $C D$ is the geometric mean of $B D$ and $A D$. As you see below, $C B$ and $A C$ are also geometric means of segment lengths in the diagram.

Proportions Involving Geometric Means in Right $\triangle A B C$

REVIEW SIMILARITY

 Notice that $\triangle R Q S$ and $\triangle R P Q$ both contain the side with length y, so these are the similar pair of triangles to use to solve for y.| length of shorter leg of I |
| :--- |
| length of shorter leg of II |$\longrightarrow \frac{B D}{C D}=\frac{C D}{A D}$

length of hypotenuse of III
length of hypotenuse of I

length of longer leg of I
length of longer leg of II

length of hypotenuse of III
length of hypotenuse of II
:---
length of shorter leg of I

EXAMPLE 3 Use a geometric mean

Find the value of y. Write your answer

Solution

in simplest radical form.

STEP 1 Draw the three similar triangles.

STEP 2 Write a proportion.
$\frac{\text { length of hyp. of } \triangle R P Q}{\text { length of hyp. of } \triangle R Q S}=\frac{\text { length of shorter leg of } \triangle R P Q}{\text { length of shorter leg of } \triangle R Q S}$

$$
\begin{aligned}
\frac{9}{y} & =\frac{y}{3} & & \text { Substitute. } \\
27 & =y^{2} & & \text { Cross Products Property } \\
\sqrt{27} & =y & & \text { Take the positive square root of each side. } \\
3 \sqrt{3} & =y & & \text { Simplify. }
\end{aligned}
$$

WRITE PROOFS

In Exercise 32 on page 455, you will use the geometric mean theorems to prove the Pythagorean Theorem

THEOREMS

Theorem 7.6 Geometric Mean (Altitude) Theorem

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

The length of the altitude is the geometric mean of the lengths of the two segments.

$$
\frac{B D}{C D}=\frac{C D}{A D}
$$

Proof: Ex. 36, p. 456

Theorem 7.7 Geometric Mean (Leg) Theorem

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.

The length of each leg of the right triangle

is the geometric mean of the lengths of the $\frac{A B}{C B}=\frac{C B}{D B}$ and $\frac{A B}{A C}=\frac{A C}{A D}$ hypotenuse and the segment of the hypotenuse that is adjacent to the leg.

Proof: Ex. 37, p. 456

EXAMPLE 4 Find a height using indirect measurement

ROCK CLIMBING WALL To find the cost of installing a rock wall in your school gymnasium, you need to find the height of the gym wall.

You use a cardboard square to line up the top and bottom of the gym wall. Your friend measures the vertical distance from the ground to your eye and the distance from you to the gym wall. Approximate the height of the gym wall.

Solution

By Theorem 7.6, you know that 8.5 is the geometric mean of w and 5 .

$$
\begin{aligned}
\frac{w}{8.5} & =\frac{8.5}{5} & & \text { Write a proportion. } \\
w & \approx 14.5 & & \text { Solve for } w .
\end{aligned}
$$

So, the height of the wall is $5+w \approx 5+14.5=19.5$ feet.

$\sqrt{\text { Guided Practice }}$ for Examples 3 and 4

3. In Example 3, which theorem did you use to solve for y ? Explain.
4. Mary is 5.5 feet tall. How far from the wall in Example 4 would she have to stand in order to measure its height?

7.3 EXERCISES

HOMEWORK O = WORKED-OUT SOLUTIONS
KEY on p. WS1 for Exs. 5, 15, and 29
$\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 19, 20, 31, and 34

SKILL Practice

EXAMPLE 1
on p. 449
for Exs. 3-4

EXAMPLE 2
on p. 450
for Exs. 5-7

EXAMPLES
3 and 4
on pp. 451-452
for Exs. 8-18

1. VOCABULARY Copy and complete: Two triangles are ? if their corresponding angles are congruent and their corresponding side lengths are proportional.
2. \star WRITING In your own words, explain geometric mean.

IIDENTIFYING SIIMILAR TRIANGLES Identify the three similar right triangles in the given diagram.

FINDING ALTITUDES Find the length of the altitude to the hypotenuse. Round decimal answers to the nearest tenth.
5.

6.

COMPLETING PROPORTIONS Write a similarity statement for the three similar triangles in the diagram. Then complete the proportion.
8. $\frac{X W}{?}=\frac{Z W}{Y W}$
9. $\frac{?}{S Q}=\frac{S Q}{T Q}$
10. $\frac{E F}{E G}=\frac{E G}{\text { ? }}$

ERROR ANALYSIS Describe and correct the error in writing a proportion for the given diagram.
11.

12.

$$
\frac{e}{d}=\frac{d}{f}
$$

FINDING LENGTHS Find the value of the variable. Round decimal answers to the nearest tenth.
13.

14.

(15.)

16.

17.

18.

19. \star MULTIPLE CHOICE Use the diagram at the right.

Decide which proportion is false.
(A) $\frac{D B}{D C}=\frac{D A}{D B}$
(B) $\frac{C A}{A B}=\frac{A B}{A D}$
(C) $\frac{C A}{B A}=\frac{B A}{C A}$
(D) $\frac{D C}{B C}=\frac{B C}{C A}$

20. \star MULTIPLE CHOICE In the diagram in Exercise 19 above, $A C=36$ and $B C=18$. Find $A D$. If necessary, round to the nearest tenth.
(A) 9
(B) 15.6
(C) 27
(D) 31.2
xy Algebra Find the value(s) of the variable(s).
21.

22.

23.

USING THEOREMS Tell whether the triangle is a right triangle. If so, find the length of the altitude to the hypotenuse. Round decimal answers to the nearest tenth.
24.

25.

26.

27. FINDING LENGTHS Use the Geometric Mean Theorems to find $A C$ and $B D$.

28. CHALLENGE Draw a right isosceles triangle and label the two leg lengths x. Then draw the altitude to the hypotenuse and label its length y. Now draw the three similar triangles and label any side length that is equal to either x or y. What can you conclude about the relationship between the two smaller triangles? Explain.
$\begin{aligned} \star & = \\ & \text { STANDARDIZED } \\ & \text { TEST PRACTICE }\end{aligned}$

Problem Solving

EXAMPLE 4 on p. 452
for Exs. 30-31

DOGHOUSE The peak of the doghouse shown forms a right angle. Use the given dimensions to find the height of the roof.
@HomeTutor for problem solving help at classzone.com

30. MONUMENT You want to determine the height of a monument at a local park. You use a cardboard square to line up the top and bottom of the monument. Mary measures the vertical distance from the ground to your eye and the distance from you to the monument. Approximate the height of the monument (as shown at the left below).

@HomeTutor for problem solving help at classzone.com
31. \star SHORT RESPONSE Paul is standing on the other side of the monument in Exercise 30 (as shown at the right above). He has a piece of rope staked at the base of the monument. He extends the rope to the cardboard square he is holding lined up to the top and bottom of the monument. Use the information in the diagram above to approximate the height of the monument. Do you get the same answer as in Exercise 30? Explain.
32. PROVING THEOREM 7.1 Use the diagram of $\triangle A B C$. Copy and complete the proof of the Pythagorean Theorem.

GIVEN In $\triangle A B C, \angle B C A$ is a right angle.
PROVE $c^{2}=a^{2}+b^{2}$

STATEMENTS
 REASONS

1.
2. Perpendicular Postulate
3. ?
4. ?
5. Addition Property of Equality
6. ?
7. ?
8. Segment Addition Postulate
9. ?
10. Simplify.
11. MULTI-STEP PROBLEM Use the diagram.
a. Name all the altitudes in $\triangle E G F$. Explain.
b. Find $F H$.
c. Find the area of the triangle.

12. \star EXTENDED RESPONSE Use the diagram.
a. Sketch the three similar triangles in the diagram. Label the vertices. Explain how you know which vertices correspond.
b. Write similarity statements for the three triangles.

c. Which segment's length is the geometric mean of $R T$ and $R Q$? Explain your reasoning.

PROVING THEOREMS In Exercises 35-37, use the diagram and GIVEN statements below.

GIVEN $\triangle A B C$ is a right triangle.
Altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.
35. Prove Theorem 7.5 by using the Plan for Proof on page 449.

36. Prove Theorem 7.6 by showing $\frac{B D}{C D}=\frac{C D}{A D}$.
37. Prove Theorem 7.7 by showing $\frac{A B}{C B}=\frac{C B}{D B}$ and $\frac{A B}{A C}=\frac{A C}{A D}$.
38. Challenge The harmonic mean of a and b is $\frac{2 a b}{a+b}$. The Greek mathematician Pythagoras found that three equally taut strings on stringed instruments will sound harmonious if the length of the middle string is equal to the harmonic mean of the lengths of the shortest and longest string.
a. Find the harmonic mean of 10 and 15.
b. Find the harmonic mean of 6 and 14 .
c. Will equally taut strings whose lengths have the ratio 4:6:12 sound harmonious? Explain your reasoning.

MIXED REVIEW

Exs. 39-46.

Simplify the expression. (p. 874)
39. $\sqrt{27} \cdot \sqrt{2}$
40. $\sqrt{8} \cdot \sqrt{10}$
41. $\sqrt{12} \cdot \sqrt{7}$
42. $\sqrt{18} \cdot \sqrt{12}$
43. $\frac{5}{\sqrt{7}}$
44. $\frac{8}{\sqrt{11}}$
45. $\frac{15}{\sqrt{27}}$
46. $\frac{12}{\sqrt{24}}$

Tell whether the lines through the given points are parallel, perpendicular, or neither. Justify your answer. (p. 171)
47. Line 1: $(2,4),(4,2)$
Line 2: $(3,5),(-1,1)$
48. Line 1: $(0,2),(-1,-1)$
Line 2: $(3,1),(1,-5)$
49: Line 1: (1, 7), (4, 7)
Line 2: (5, 2), (7, 4)

