Properties of Circles

10.1 Use Properties of Tangents

10.2 Find Arc Measures
10.3 Apply Properties of Chords
10.4 Use Inscribed Angles and Polygons
10.5 Apply Other Angle Relationships in Circles
10.6 Find Segment Lengths in Circles
10.7 Write and Graph Equations of Circles

Before

In previous chapters, you learned the following skills, which you'll use in Chapter 10: classifying triangles, finding angle measures, and solving equations.

Prerequisite Skills

VOCABULARY CHECK

Copy and complete the statement.

1. Two similar triangles have congruent corresponding angles and ? corresponding sides.
2. Two angles whose sides form two pairs of opposite rays are called ?.
3. The ? of an angle is all of the points between the sides of the angle.

SKILLS AND ALGEBRA CHECK

Use the Converse of the Pythagorean Theorem to classify the triangle. (Review p. 441 for 10.1.)
4. $0.6,0.8,0.9$
5. $11,12,17$
6. $1.5,2,2.5$

Find the value of the variable. (Review pp. 24, 35 for 10.2, 10.4.)
7.

8.

9.

[^0]
Now

In Chapter 10, you will apply the big ideas listed below and reviewed in the Chapter Summary on page 707. You will also use the key vocabulary listed below.

Big Ideas

(1) Using properties of segments that intersect circles
(2) Applying angle relationships in circles
(3) Using circles in the coordinate plane

Key Vocabulary

- circle, p. 651
center, radius, diameter
- chord, p. 651
- secant, p. 651
- tangent, p. 651
- central angle, p. 659
- minor arc, p. 659
- major arc, p. 659
- semicircle, p. 659
- congruent circles, p. 660
- congruent arcs, p. 660
- inscribed angle, p. 672
- intercepted arc, p. 672
- standard equation of a circle, p. 699

Why?

Circles can be used to model a wide variety of natural phenomena. You can use properties of circles to investigate the Northern Lights.

Animated Geometry

The animation illustrated below for Example 4 on page 682 helps you answer this question: From what part of Earth are the Northern Lights visible?

Animated Geometry at classzone.com

Other animations for Chapter 10: pages 655, 661, 671, 691, and 701

10.1 Explore Tangent Segments

MATERIALS • compass • ruler

QUESTION How are the lengths of tangent segments related?

A line can intersect a circle at 0,1 , or 2 points. If a line is in the plane of a circle and intersects the circle at 1 point, the line is a tangent.

EXPLORE Draw tangents to a circle

STEP 1

Draw a circle Use a compass to draw a circle. Label the center P.

STEP 2

Draw tangents Draw lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C B}$ so that they intersect $\odot P$ only at A and C, respectively. These lines are called tangents.

STEP 3

Measure segments $\overline{A B}$ and $\overline{C B}$ are called tangent segments. Measure and compare the lengths of the tangent segments.

Draw Conclusions Use your observations to complete these exercises

1. Repeat Steps 1-3 with three different circles.
2. Use your results from Exercise 1 to make a conjecture about the lengths of tangent segments that have a common endpoint.
3. In the diagram, L, Q, N, and P are points of tangency. Use your conjecture from Exercise 2 to find $L Q$ and $N P$ if $L M=7$ and $M P=5.5$.

4. In the diagram below, A, B, D, and E are points of tangency. Use your conjecture from Exercise 2 to explain why $\overline{A B} \cong \overline{E D}$.

10.1 Use Properties of Tangents

Before
Now
You found the circumference and area of circles.
You will use properties of a tangent to a circle.
Why?
So you can find the range of a GPS satellite, as in Ex. 37.

Key Vocabulary

- circle center, radius, diameter
- chord
- secant
- tangent

A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. A circle with center P is called "circle P " and can be written $\odot P$. A segment whose endpoints are the center and any point on the circle is a radius.

A chord is a segment whose endpoints are on a circle. A diameter is a chord that contains the center of the circle.

A secant is a line that intersects a circle in two points. A tangent is a line in the plane of a circle that intersects the circle in exactly one point, the point of tangency. The tangent ray $\overrightarrow{A B}$ and the tangent segment $\overline{A B}$ are also called tangents.

EXAMPLE 1 Identify special segments and lines

Tell whether the line, ray, or segment is best described as a radius, chord, diameter, secant, or tangent of $\odot C$.
a. $\overline{A C}$
b. $\overline{A B}$
c. $\overrightarrow{D E}$
d. $\overleftrightarrow{A E}$

Solution

a. $\overline{A C}$ is a radius because C is the center and A is a point on the circle.
b. $\overline{A B}$ is a diameter because it is a chord that contains the center C.
c. $\overrightarrow{D E}$ is a tangent ray because it is contained in a line that intersects the circle at only one point.
d. $\overleftrightarrow{A E}$ is a secant because it is a line that intersects the circle in two points.

Guided Practice for Example 1

1. In Example 1, what word best describes $\overline{A G}$? $\overline{C B}$?
2. In Example 1, name a tangent and a tangent segment.

READ VOCABULARY The plural of radius is radii. All radii of a circle are congruent.

RADIUS AND DIAMETER The words radius and diameter are used for lengths as well as segments. For a given circle, think of a radius and a diameter as segments and the radius and the diameter as lengths.

EXAMPLE 2 Find lengths in circles in a coordinate plane

Use the diagram to find the given lengths.
a. Radius of $\odot A$
b. Diameter of $\odot A$
c. Radius of $\odot B$
d. Diameter of $\odot B$

Solution

a. The radius of $\odot A$ is 3 units.
b. The diameter of $\odot A$ is 6 units.
c. The radius of $\odot B$ is 2 units.
d. The diameter of $\odot B$ is 4 units.

GUIDED PRACTICE for Example 2

3. Use the diagram in Example 2 to find the radius and diameter of $\odot C$ and $\odot D$.

COPLANAR CIRCLES Two circles can intersect in two points, one point, or no points. Coplanar circles that intersect in one point are called tangent circles. Coplanar circles that have a common center are called concentric.

READ VOCABULARY A line that intersects a circle in exactly one point is said to be tangent to the circle.

COMMON TANGENTS A line, ray, or segment that is tangent to two coplanar circles is called a common tangent.

ExAMPLE 3 Draw common tangents

Tell how many common tangents the circles have and draw them.
a.

b.

c.

Solution

a. 4 common tangents

b. 3 common tangents

c. 2 common tangents

Guided Practice for Example 3

Tell how many common tangents the circles have and draw them.
4.

5.

6.

THEOREM

For Your Notebook

THEOREM 10.1

In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

Proof: Exs. 39-40, p. 658

Line \boldsymbol{m} is tangent to $\odot \boldsymbol{Q}$ if and only if $\boldsymbol{m} \perp \overline{\mathbf{Q P}}$.

EXAMPLE 4 Verify a tangent to a circle

In the diagram, $\overline{\boldsymbol{P T}}$ is a radius of $\odot P$.
Is $\overline{\boldsymbol{S T}}$ tangent to $\odot \boldsymbol{P}$?

Solution

Use the Converse of the Pythagorean Theorem. Because $12^{2}+35^{2}=37^{2}$, $\triangle P S T$ is a right triangle and $\overline{S T} \perp \overline{P T}$. So, $\overline{S T}$ is perpendicular to a radius of $\odot P$ at its endpoint on $\odot P$. By Theorem 10.1, $\overline{S T}$ is tangent to $\odot P$.

EXAMPLE 5 Find the radius of a circle

In the diagram, B is a point of tangency. Find the radius r of $\odot C$.

Solution

You know from Theorem 10.1 that $\overline{A B} \perp \overline{B C}$, so $\triangle A B C$ is a right triangle.
You can use the Pythagorean Theorem.

$$
\begin{aligned}
A C^{2} & =\boldsymbol{B C ^ { 2 }}+A \boldsymbol{B}^{2} & & \text { Pythagorean Theorem } \\
(r+50)^{2} & =\boldsymbol{r}^{2}+80^{2} & & \text { Substitute. } \\
r^{2}+100 r+2500 & =r^{2}+6400 & & \text { Multiply. } \\
100 r & =3900 & & \text { Subtract from each side. } \\
r & =39 \mathrm{ft} & & \text { Divide each side by } \mathbf{1 0 0 .} .
\end{aligned}
$$

THEOREM

For Your Notebook

Theorem 10.2

Tangent segments from a common external point are congruent.

If $\overline{S R}$ and $\overline{S T}$ are tangent segments, then $\overline{\boldsymbol{S R}} \cong \overline{\boldsymbol{S T}}$.

EXAMPLE 6 Find the radius of a circle

$\overline{\boldsymbol{R S}}$ is tangent to $\odot C$ at S and $\overline{\boldsymbol{R T}}$ is tangent to $\odot \boldsymbol{C}$ at \boldsymbol{T}. Find the value of \boldsymbol{x}.

Solution

$$
\begin{aligned}
R S & =R T & & \text { Tangent segments from the same point are } \cong . \\
28 & =3 x+4 & & \text { Substitute. } \\
8 & =x & & \text { Solve for } x .
\end{aligned}
$$

Guided Practice for Examples 4, 5, and 6
7. Is $\overline{D E}$ tangent to $\odot C$?

8. $\overline{S T}$ is tangent to $\odot Q$. Find the value of r.

9. Find the value(s) of x.

10.1 EXERCISES

HOMEWORK
KEY on p. WS1 for Exs. 7, 19, and 37
$\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 29, 33, and 38

SKILL PrACTICE

1. vOCABULARY Copy and complete: The points A and B are on $\odot C$. If C is a point on $\overline{A B}$, then $\overline{A B}$ is a ?.
2. \star WRITING Explain how you can determine from the context whether the words radius and diameter are referring to a segment or a length.

EXAMPLE 1 on p. 651 for Exs. 3-11

EXAMPLES

2 and 3 on pp. 652-653 for Exs. 12-17

IMATCHING TERMS Match the notation with the term that best describes it.
3. B
A. Center
4. $\overleftrightarrow{B H}$
B. Radius
5. $\overline{A B}$
C. Chord
6. $\overleftrightarrow{A B}$
D. Diameter
7. $\overleftrightarrow{A B}$
E. Secant
8. G
F. Tangent
9. $\overline{C D}$
G. Point of tangency
10. $\overline{B D}$
H. Common tangent

AinimatedGeometry at classzone.com
11. ERROR ANALYSIS Describe and correct the error in the statement about the diagram.

COORDINATE GEOMETRY Use the diagram at the right.
12. What are the radius and diameter of $\odot C$?
13. What are the radius and diameter of $\odot D$?
14. Copy the circles. Then draw all the common tangents of the two circles.

DRAWING TANGENTS Copy the diagram. Tell how many common tangents the circles have and draw them.
15.

16.

17.

EXAMPLE 4 *...........................
on p. 653
for Exs. 18-20

EXAMPLES
5 and 6
on p. 654
for Exs. 21-26

DETERMIINING TANGENCY Determine whether $\overline{A B}$ is tangent to \odot C. Explain.
18.

19.

20.

xy Algebra Find the value(s) of the variable. In Exercises 24-26, B and D are points of tangency.
21.

24.

22.

25.

23.

26.

COMMON TANGENTS A common internal tangent intersects the segment that joins the centers of two circles. A common external tangent does not intersect the segment that joins the centers of the two circles. Determine whether the common tangents shown are internal or external.
27.

28.

29. \star MULTIPLE CHOICE In the diagram, $\odot P$ and $\odot Q$ are tangent circles. $\overline{R S}$ is a common tangent. Find $R S$.
(A) $-2 \sqrt{15}$
(B) 4
(C) $2 \sqrt{ } 15$
(D) 8

30. REASONING In the diagram, $\overrightarrow{P B}$ is tangent to $\odot Q$ and $\odot R$. Explain why $\overline{P A} \cong \overline{P B} \cong \overline{P C}$ even though the radius of $\odot Q$ is not equal to the radius of $\odot R$.

31. TANGENT LINES When will two lines tangent to the same circle not intersect? Use Theorem 10.1 to explain your answer.
32. ANGLE BISECTOR In the diagram at right, A and D are points of tangency on $\odot C$. Explain how you know that $\overrightarrow{B C}$ bisects $\angle A B D$. (Hint: Use Theorem 5.6, page 310.)

33. \star SHORT RESPONSE For any point outside of a circle, is there ever only one tangent to the circle that passes through the point? Are there ever more than two such tangents? Explain your reasoning.
34. CHALLENGE In the diagram at the right, $A B=A C=12$, $B C=8$, and all three segments are tangent to $\odot P$. What is the radius of $\odot P$?

Problem Solving

EXAMPLE 4 on p. 653 for Ex. 37

BICYCLES On modern bicycles, rear wheels usually have tangential spokes. Occasionally, front wheels have radial spokes. Use the definitions of tangent and radius to determine if the wheel shown has tangential spokes or radial spokes.
35.

36.

37. GLOBAL POSITIONING SYSTEM (GPS) GPS satellites orbit about 11,000 miles above Earth. The mean radius of Earth is about 3959 miles. Because GPS signals cannot travel through Earth, a satellite can transmit signals only as far as points A and C from point B, as shown. Find $B A$ and $B C$ to the nearest mile.

@HomeTutor for problem solving help at classzone.com

38. \star SHORT RESPONSE In the diagram, $\overline{R S}$ is a common internal tangent (see Exercises 27-28) to $\odot A$ and $\odot B$. Use similar triangles to explain why $\frac{A C}{B C}=\frac{R C}{S C}$.

39. PROVING THEOREM 10.1 Use parts (a)-(c) to prove indirectly that if a line is tangent to a circle, then it is perpendicular to a radius.

GIVEN Line m is tangent to $\odot Q$ at P.
PROVE $>m \perp \overline{Q P}$

a. Assume m is not perpendicular to $\overline{Q P}$. Then the perpendicular segment from Q to m intersects m at some other point R. Because m is a tangent, R cannot be inside $\odot Q$. Compare the length $Q R$ to $Q P$.
b. Because $\overline{Q R}$ is the perpendicular segment from Q to $m, \overline{Q R}$ is the shortest segment from Q to m. Now compare $Q R$ to $Q P$.
c. Use your results from parts (a) and (b) to complete the indirect proof.
40. PROVING THEOREM 10.1 Write an indirect proof that if a line is perpendicular to a radius at its endpoint, the line is a tangent.
GIVEN $>m \perp \overline{Q P}$
PROVE Line m is tangent to $\odot Q$.

41. PROVING THEOREM 10.2 Write a proof that tangent segments from a common external point are congruent.
GIVEN $\overline{S R}$ and $\overline{S T}$ are tangent to $\odot P$.
PROVE $>\overline{S R} \cong \overline{S T}$
Plan for Proof Use the Hypotenuse-Leg Congruence
 Theorem to show that $\triangle S R P \cong \triangle S T P$.
42. ChAllenge Point C is located at the origin. Line ℓ is tangent to $\odot C$ at $(-4,3)$. Use the diagram at the right to complete the problem.
a. Find the slope of line ℓ.
b. Write the equation for ℓ.
c. Find the radius of $\odot C$.

d. Find the distance from ℓ to $\odot C$ along the y-axis.

Mixed Review

 Ex. 43.43. D is in the interior of $\angle A B C$. If $m \angle A B D=25^{\circ}$ and $m \angle A B C=70^{\circ}$, find $m \angle D B C$. (p. 24)

Find the values of \boldsymbol{x} and $\boldsymbol{y} \cdot(p .154)$
44.

45.

46.

47. A triangle has sides of lengths 8 and 13 . Use an inequality to describe the possible length of the third side. What if two sides have lengths 4 and 11 ? (p. 328)

[^0]: @HomeTutor Prerequisite skills practice at classzone.com

